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Overview of this lesson

In this lesson we’re going to build up to several important concepts using what we’ve
learned already and a few more basic concepts:

• Sequences

• Metric spaces and boundedness

• Limits

• Properties of the summation operator

• Arithmetic mean and the sample mean

• The expected value of a r.v. and properties of the expectation operator

• Variance, covariance, and correlation

• Statistics, estimators, and bias
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Sequences

A “sequence” is an assignment of numbers to the natural numbers, with elements
indexed from 1 to n, where n can be finite or infinite: {xn}cn=1 = {x1, x2, ..., xn}

• A sequence of real numbers, {xn}, is “increasing” (“decreasing”) if xn+1 ≥ xn
(xn+1 ≤ xn) for all n

• If {xn} is a sequence of real numbers, then {xn} tends to infinity (written {xn}n∈N
or {xn}∞n=1 or xn → ∞ or lim xn = ∞) if ∀ K ∈ R ∃ N(K ) s.t. n > N(K )

Examples:

• {xn}6n=1 = {0,−1, 2,−3, 4,−5}
• {xn} = {1, 2, 3, 4, ...}
• {xn}n∈N = {1,−1, 2,−2, ...}
• {xn}∞n=1 = {1, 12 ,

1
4 ,

1
8 , ...}
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Metric spaces and boundedness

A “metric space” (X , d) generalizes the concept of distance between elements of a set

→ X is a set and d : X × X → R+ is a function satisfying

(1) d(x , y) ≥ 0, where d(x , y) = 0 ⇐⇒ x = y ∀ x , y ∈ X

(2) d(x , y) = d(y , x) ∀ x , y ∈ X

(3) d(x , z) ≤ d(x , y) + d(y , z) ∀ x , y , z ∈ X (triangle inequality)

In a metric space, (X , d), a subset S ⊆ X is “bounded” if ∃ x ∈ X , β ∈ R such that ∀
s ∈ S , d(s, x) ≤ β

• A sequence {xn} is “bounded from below” if ∃ Na such that xn ≥ Na ∀ xn

• A sequence {xn} is “bounded from above” if ∃ Nb such that xn ≤ Nb ∀ xn
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ε-balls

In a metric space, (X , d), define

• βε(x) = {y ∈ X : d(y , x) < ε}
= an “open ball” with center x and radius ε

• βε[x ] = {y ∈ X : d(y , x) ≤ ε}
= a “closed ball” with center x and radius ε
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Limits, convergence, and divergence

A sequence of real numbers, {xn}, has a “limit” point L ∈ R iff for each ε > 0, ∃
N ∈ Z++ such that if n ≥ N then |xn − L| < ε

• A sequence {xn} “converges” to x (xn → x or limn→∞ xn = x) if it has a limit x

• If {xn} does not have a limit point, then we say it “diverges”

• If xn → ∞, then it diverges (or “is divergent”)
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Some practice

Exercise: Write down an example of a sequence that is strictly increasing and a
sequence that is strictly decreasing. For each sequence:

(1) Does this sequence have a limit? If so, what is it?

(2) Write another example for which the opposite is true

(3) Explain to your classmates why these are the case
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Summation operator

Suppose we have some sequence of numbers, x1, x2, ..., xn

• We can write the sum of these numbers as x1 + x2 + ...+ xn

• The “summation operator” does this more compactly:
n∑

i=1
xi = x1 + x2 + ...+ xn

→ We will also often write it as
∑n

i=1 xi to save vertical space
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Properties of the summation operator

There are many properties of summation operators. A few that are relevant for us:

i) For any constant c:
∑n

i=1 c = nc

ii) For any constant c:
∑n

i=1 cxi = c
∑n

i=1 xi

iii) For any constants c and d :∑n
i=1(c + d)xi =

∑n
i=1 cxi +

∑n
i=1 dxi = c

∑n
i=1 xi + d

∑n
i=1 xi = (c + d)

∑n
i=1 xi

iv) For any constants c and d :
∑n

i=1(cxi + dyi ) = c
∑n

i=1 xi + d
∑n

i=1 yi

Exercise: Write down a concrete example of each of these properties
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Properties the summation operator lacks

Summation operators lack many properties. A couple that are worth noting:

i) In general,
∑n

i=1
xi
yi
̸=

∑n
i=1 xi∑n
i=1 yi

→ This is not the case if yi = c ∀ i
· E.g. If yi = c ∀ i , then

∑n
i=1

xi
yi
=
∑n

i=1
xi
c = 1

c

∑n
i=1 xi

ii) In general,
∑n

i=1 x
2
i ̸= (

∑n
i=1 xi )

2

Exercise: Write down a concrete example of how, in general, neither property holds
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One more very useful property of summation operators

Now that we know, in general,
∑n

i=1 x
2
i ̸= (

∑n
i=1 xi )

2, we note one more useful
property of summation operators:

v)
∑n

i=1(xi − x̄)(yi − ȳ) =
∑n

i=1(xi − x̄)yi , where in general z̄ = 1
n

∑n
i=1 zi

Exercise:

(1) Show this is true (hint: what is
∑n

i=1(xi − x̄)(−ȳ)?)

(2) What does this imply about
∑n

i=1(xi − x̄)xi?
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Arithmetic mean

The arithmetic mean, x̄ , is a measure of central tendency: it attempts to describe a
data set by quantifying the center of the distribution such that the sum of deviations
from x̄ equals 0

Suppose we have a finite, discrete set of N data points {xi}i=1,...,N where xi ̸= xj for
≥ 1 i ̸= j , for i , j ∈ N

• Assume this set of data points has a central (i.e. “mean”) value, x̄ , such that the
sum of deviations from x̄ equals 0

• Re-arrange the data so that x1, ..., xM < x̄ and xM+1, ..., xN ≥ x̄ , where M < N
• Then (xN − x̄) + ...+ (xM+1 − x̄)− (x̄ − xM)− ...− (x̄ − x1) = 0
• Rearranging this yields x1 + ...+ XN − Nx̄ =

∑N
i=1 xi − Nx̄ = 0

=⇒ x̄ = 1
N

N∑
i=1

xi

• This is true of any “sample”, including a sample of observed values of r.v.s

See here for more discussion
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Examples and exercises

If we have a sequence of N values, x1, ..., xN , then the mean is x̄ = 1
N

∑N
i=1 xi

• Let N = 3, with x1 = 5, x2 = 1, x3 = 3. Then x̄ = 1
3(5 + 1 + 3) = 9

3 = 3

• Let xi = c some constant ∀ i . Then x̄ = 1
N

∑N
i=1 c = c N

N = c

Exercise: Consider the sequence of numbers {x1, x2, x3, x4, x5} = {2, 10, 15, 3, 5}
• Find x̄ , then show that

∑N
i=1(xi − x̄) = 0
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Another useful result

• We know
∑N

i=1(xi − x̄) = 0, but we are often more interested in
∑N

i=1(xi − x̄)2

• Unless xi = x̄ ∀ i , we know that
∑N

i=1(xi − x̄)2 > 0

• Regardless, a useful result is that
∑N

i=1(xi − x̄)2 =
∑N

i=1 x
2
i − Nx̄2

→ More generally,
∑N

i=1(xi − x̄)(yi − ȳ) =
∑N

i=1 xiyi − Nx̄ȳ

Exercise:

(1) Why is it true that
∑N

i=1(xi − x̄)2 > 0 unless xi = x̄ ∀ i? What if xi = x̄ ∀ i?

(2) Show that
∑N

i=1(xi − x̄)2 =
∑N

i=1 x
2
i − Nx̄2

(3) Show that
∑N

i=1(xi − x̄)(yi − ȳ) =
∑N

i=1 xiyi − Nx̄ȳ
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Population vs sample

• A “population” is the entire group in which you’re interested and about which you
want to draw conclusions

• A “population parameter” summarizes an aspect of the population

• A “sample” is a subset of the population from which you collect data

→ We’ll revisit this more in a little while
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Expected value of a r.v.

Let X be a random variable, and let E [·] be the “expectation operator”

• The “expected value” of X is the weighted average of possible outcome values of X , x1, ..., xK

→ Intuitively, the weights are the probability of each value occurring in the population
→ That is, they are the population weights defined by the pmf or pdf associated with X , f (x)

If X is a discrete r.v.

→ E [X ] = x1f (x1) + x2f (x2) + ...+ xK f (xK )
=

∑K
j=1 xj f (xj)

If X is a continuous r.v.

→ E [X ] =
∫∞
−∞ xf (x)dx

We say E [X ] = µX (or even just E [X ] = µ) is the “population mean” of X

→ µ is a population parameter
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Properties of E [·]
If X is a r.v. with E [X ] = µX and Y is a r.v. with E [Y ] = µY ,, and if a, b ∈ R are
constants, then:

(1) E [a] = a

(2) E [a+ bX ] = E [a] + bE [X ] = a+ bµ

(3) E [b1X1 + ...+ bKXK ] = b1E [X1] + ...+ bKE [XK ]

→ Expectations of weighted summations are summations of wtd expectations

→ Can compactly be expressed as E

[
K∑
i=1

aiXi

]
=

K∑
i=1

aiE [Xi ]

(4) E [E [X ]] = E [X ]

→ E [E [X ]] = E [µX ] = µX

(5) E [XY ] = E [X ]E [Y ] if X and Y are independent

→ The converse is not true

Exercise: Write down a concrete example of each of these properties
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More expected value exercises

Exercise: A r.v., Y , is the number of Tails from two flips of a fair coin

(1) What is the sample space?

(2) Write down Y (ω)

(3) Write down the associated probability function, fY (y)

(4) What is E [Y ]? Show your work

(5) Repeat (1) - (4) for Z = Y 2
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Conditional expectation

Let X and Y be r.v.s, and A be an event in F with an associated non-zero probability

• The “conditional expectation” of a r.v. is its mean value in a population given some set of
conditions occurs

• If X is a discrete r.v., then E [X |A] =
∑

x xP(X = x |A)
=

∑
x x

P({X=x}∩A)
P(A)

= 0 if P(A) = 0

• If X and Y are discrete r.v.s, then E [X |Y = y ] =
∑

x xP(X = x |Y = y)

=
∑

x x
P(X=x,Y=y)

P(Y=y)

→ P(X = x ,Y = y) is the “joint probability mass function” of X and Y

= 0 if P(Y = y) = 0

• If X and Y are continuous r.v.s, then E [X |Y = y ] =
∫∞
−∞ xfX |Y (x |y)dx

= 1
fY (y)

∫∞
−∞ xfX ,Y (x , y)dx

→ fX ,Y (x , y) is the “joint probability density function” of X and Y
→ Undefined if fY (y) = 0

• E [XY |Y ] = YE [X |Y ]

• E [X ] = E [E [X |Y ]] by “the law of iterated expectations” (LIE)
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The law of iterated expectations

Assume two r.v.s, X and Y , are discrete. Then

E [X ] =
∑
i
xiP(X = xi )

=
∑
i
xi

(∑
j
P(X = xi ,Y = yj)

)

=
∑
i
xi

(∑
j
P(X = xi |Y = yj)P(Y = yj)

)
=

∑
j

(∑
i
xiP(X = xi |Y = yj)

)
P(Y = yj)

=
∑
j
E [X |Y = y ]P(Y = yj)

= E [E [X |Y ]]
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Variance of a r.v.

Let W be a r.v. with E [W ] = µW

• “Variance” is a measure of dispersion of a r.v. (how spread out it is from its mean)

→ It is the squared deviation from the mean of a r.v.
→ Squared because E [W − E [W ]] = E [W ]− E [E [W ]] = µW − µW = 0

• Var(W )

≡ V (W )
= Cov(W ,W ) is the “covariance” of W with itself

= E
[
(W − E [W ])2

]
= E [(W − E [W ])(W − E [W ])]
= E [W 2]− 2E [E [W ]W ] + E [W ]2

= E [W 2]− 2E [W ]E [W ] + E [W ]2

= E [W 2]− E [W ]2

=
∑n

i=1(wi − µW )2f (wi ) if W is discrete
=

∫∞
−∞(w − µW )2f (w)dw if W is continuous

= σ2
W is the “population variance” of W

→ σW is the “population standard deviation” of W
→ σW and σ2

W are “population parameters”
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Properties of V (·)

Let X and Y be r.v.s, and let a, b ∈ R, b ̸= 0 be constants

(1) V (X ) ≥ 0

(2) V (a) = 0

(3) V (X ) = 0 ⇐⇒ ∃a : P(X = a) = 1

(4) V (a+ bX ) = b2V (X )

(5) V (X + Y ) = V (X ) + V (Y ) + 2Cov(X ,Y )

= V (X ) + V (Y ) if X and Y are independent

(6) V (aX − bY ) = a2V (X ) + b2V (Y )− 2abCov(X ,Y )

Exercise:

(1) Find V (X − Y )

(2) Show that V (a+ bX ) = b2V (X )
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Variance exercises

Let W (ΩW ) = {−1, 1} and Z (ΩZ ) = {−3, 2, 4} be two discrete random variables,
with associated pmfs

fW (w) =

{
1/3 if w = −1
2/3 if w = 1

and

fZ (z) =


0.5 if z = −3

0.25 if z = 2
0.25 if z = 4

Exercise:

(1) Find E [W ] and E [Z ]

(2) Solve = E
[
(W − E [W ])2

]
for E [W 2]− E [W ]2

(3) Find V (W ) and V (Z )
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Standardized random variables

Let X be a r.v. with mean µX and variance σ2
X > 0.

• Then a new r.v., Z , is a “standardization” of X :

Z =
X − µX

σX

where E [Z ] = µZ = 0 and V (Z ) = σ2
Z = 1

Exercise: Show that E [Z ] = 0 and V (Z ) = 1
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Conditional variance

Let X and Y be r.v.s

• V (X |Y ) = E [X 2|Y ]− E [X |Y ]2

• V (X ) = V (E [Y |X ]) + E [V (Y |X )]
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Covariance

Let X1 and X2 be two r.v.s

• “Covariance” is a measure of the joint variability of two r.v.s

• Cov(X1,X2) = E [(X1 − E [X1])(X2 − E [X2])]

= E [X1X2]− E [X1]E [X2]

→ = E [X 2
1 ]− E [X1]

2 = V (X1) if X2 = X1

→ = 0 if X1 and X2 are independent

Let W and Z be the r.v.s defined earlier Exercise:

(1) Can you find Cov(W ,Z ) without further information? What do you need to
know? Show this?

(2) Find Cov(W ,W )
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Properties of Cov(·)

Let X1 and X2 be two r.v.s, and let a, b ∈ R be constants. Define another r.v.,
X3 = aX1 − bX2

• Cov(X1, a) = 0

• Cov(aX1, bX2) = abCov(X1,X2)

• Cov(X1 + a,X2 + b) = Cov(X1,X2)

Exercise: Let E [X1] = µ1, E [X2] = µ2, V (X1) = σ2
1, and V (X2) = σ2

2, and let X1,X2

be independent

(1) Find E [X3]

(2) Find V (X3)

(3) Find Cov(X1,X3)

(4) Find V (aX1 − bX3)
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Correlation

The magnitude of the covariance of two r.v.s does not have a straightforward
interpretation. For this, “correlation”—a measure of a relationship between two
things—can be more useful

Let X and Y be r.v.s, and define W = X−E [X ]√
V (X )

and Z = Y−E [Y ]√
V (Z)

• Corr(X ,Y ) = Cov(W ,Z ) = Cov(X ,Y )√
V (X )V (Y )

= ρXY if
√
V (X )V (Y ) ̸= 0

→ ρXY ∈ [−1, 1]
→ If ρXY = 0, we say X and Y are “uncorrelated”

⇏ X ,Y independent!

→ However, X ,Y independent ⇒ X ,Y uncorrelated

Exercise: X1, X2, and X3 were defined earlier. Find ρX1X3 if X1 and X2 are independent
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Random samples and statistics

• A sequence of r.v.s, X1, ...,Xn are a “random sample” of size n from a population
if they are “independent and identically distributed” r.v.s

→ Here, “independent” means each Xi is an independent event
→ “identically distributed” means the Xi share a common probability space

(Ω,F ,P) and distribution

• Let X1, ...,Xn be a random sample from population, and let T (x1, ..., xn) be a
real-valued function with a domain that includes the sample space of (X1, ...,Xn)

→ Then the r.v. Y = T (X1, ...,Xn) is called a “statistic”
→ The prob dist’n of a statistic Y = T (X ) is the “sampling distribution” of Y

• An “estimator” is a statistic, θ̂, used to infer an unknown population parameter,
θ, in a statistical model (e.g. µ or σ)
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Some common statistics

Let X1, ...,Xn be a “random sample” of size n from a population

• The “sample mean” is the arithmetic mean of the values in a random sample,
X̄ = 1

n

∑n
i=1 Xi

→ x̄ denotes the “observed value” of X̄ in any random sample

• The “sample variance” measures the dispersion of the sample data from the
sample mean. We will define S2 = 1

n−1

∑n
i=1(Xi − X̄ )2

→ s2 denotes the “observed value” of S2 in any random sample
→ We will see shortly why we use n − 1 in the denominator instead of n
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Estimators and bias

An estimator, θ̂, is a statistic used to infer an unknown population parameter, θ

• “Bias” in an estimator is the difference between the expected value of an
estimator and the true value of the population parameter being estimated

→ Bias(θ̂, θ) = E
[
θ̂
]
− θ

Example: Let X1, ...,Xn be iid r.v.s with mean µ and variance σ2, and define X̄ = 1
n

∑n
i=1 Xi

• Is X̄ a biased estimator of µ?

E
[
X̄
]
= E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi ]

=
n

n
µ

= µ

⇐⇒ Bias(X̄ , µ) =E
[
X̄
]
− µ = µ− µ = 0

So X̄ is an “unbiased estimator” of µ
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Lab exercise 1

Exercise:
A r.v., Y , is the face value of one roll of a fair four-sided die

(1) What is the sample space?

(2) Write down Y (ω)

(3) Write down the associated probability function, fY (y)

(4) What is E [Y ]? Show your work

(5) Repeat (1) - (4) for Z = Y 2
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Lab exercise 2

Exercise:

Let a r.v. Y (ω) =

{
−2 if ω = H
0 if ω = T

, is the value of one flip of a two-sided coin

(1) Write down the probability function, fY (y), associated with Y (ω)

(2) What is E [Y ]? Show your work

(3) Repeat (1) - (4) for Z = Y 2
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Lab exercise 3

Provide a proof for the law of iterated expectations i.e. E [Y ] = E [E [Y |X ]]
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Lab exercise 4 (repeat of in-lesson exercises)

Exercise: Write down an example of a sequence that is strictly increasing and a
sequence that is strictly decreasing. For each sequence:

(1) Does this sequence have a limit? If so, what is it? Write another example for
which the opposite is true

(2) Show that
∑n

i=1(xi − x̄)(yi − ȳ) =
∑n

i=1(xi − x̄)yi

(3) Consider the sequence of numbers {x1, x2, x3, x4, x5} = {2, 10, 15, 3, 5}
• Find x̄ , then show that

∑N
i=1(xi − x̄) = 0

(4) Why is it true that
∑N

i=1(xi − x̄)2 > 0 unless xi = x̄ ∀ i? What if xi = x̄ ∀ i?

(5) Show that
∑N

i=1(xi − x̄)2 =
∑N

i=1 x
2
i − Nx̄2

(6) Show that
∑N

i=1(xi − x̄)(yi − ȳ) =
∑N

i=1 xiyi − Nx̄ȳ
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Lab exercise 5

Exercise:
A r.v., Y , is the face value of one roll of a fair six-sided die

(1) What is the sample space?

(2) Write down Y (ω)

(3) Write down the associated probability function, fY (y)

(4) What is E [Y ]? What is V (Y )? Show your work

(5) Repeat (1) - (4) for Z = Y 2

(6) What is Cov(Y ,Z )?

(7) What is Corr(Y ,Z )?

(8) Are Y and Z independent?

Math Camp for Economists: Expectation, population parameters, & sample statistics Justin C. Wiltshire, University of Victoria



Lab exercise 6

Exercise:

Let a r.v. Y (ω) =

{
−1 if ω = H
1 if ω = T

, is the value of one flip of a two-sided coin

(1) Write down the probability function, fY (y), associated with Y (ω)

(2) What is E [Y ]? What is V (Y )? Show your work

(3) Repeat (1) - (4) for Z = Y 2

(4) What is Cov(Y ,Z )?

(5) What is Corr(Y ,Z )?

(6) Are Y and Z independent?
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Lab exercise 7

Exercise:
Let X1, ...,Xn be iid r.v.s with mean µ and variance σ2, and define X̄ = 1

n

∑n
i=1 Xi and

S̃2 = 1
n

∑n
i=1(Xi − X̄ )2. We showed, earlier, that E

[
X̄
]
= µ, thus X̄ is an unbiased estimator of µ

(1) Define a statistic X̃ = 1
n−1

∑n
i=1 Xi . Is X̃ also an unbiased estimator of µ? Why?

(2) What is the variance of X̄?

(3) Is S̃2 a biased estimator of σ2? It may be helpful to recall that:

a) Adding and subtracting X̄ from Xi − µ yields Xi − µ = (Xi − X̄ ) + (X̄ − µ)
b) E [ 1

n

∑n
i=1(Xi − µ)2] = V (Xi )

c) E [ 1
n

∑n
i=1(X̄ − µ)2] = V (X̄ ), which you found in (2)

(4) Given your answer to (3), define an unbiased estimator for σ2. Use your answer to (3) to show
that this estimator is indeed unbiased
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Lab exercise 8 (Repeat from lesson)

Let X and Y be two r.v.s, and let a, b ∈ R be constants

(1) Find V (X − Y )

(2) Show that V (a+ bX ) = b2V (X )

(3) If a r.v. X has mean µX and variance σ2
X , define a new r.v. Z as a standardization

of X . Show that Z , the standardization of X , has mean 0 and variance 1
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Lab exercise 9 (Repeat from lesson)

Let X1 and X2 be two independent r.v.s, with E [X1] = µ1, E [X2] = µ2, V (X1) = σ2
1,

and V (X2) = σ2
2, and let a, b ∈ R be constants. Define another r.v., X3 = aX1 − bX2.

(1) Find E [X3]

(2) Find V (X3)

(3) Find Cov(X1,X3)

(4) Find V (aX1 − bX3)

(5) Find ρX1X3
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Lab exercise 10 (Repeat from lesson)

Let W (ΩW ) = {−1, 1} and Z(ΩZ ) = {−3, 2, 4} be two discrete random variables, with associated pmfs

fW (w) =

{
1/3 if w = −1
2/3 if w = 1

and

fZ (z) =


0.5 if z = −3

0.25 if z = 2
0.25 if z = 4

(1) Find E [W ] and E [Z ]

(2) Solve = E
[
(W − E [W ])2

]
for E [W 2]− E [W ]2

(3) Find V (W ) and V (Z)

(4) Can you find Cov(W ,Z) without further information? What do you need to know? Show this?

(5) Find Cov(W ,W )
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