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Overview of this lesson

In this lesson we’re going to non-rigorously cover the basics of linear algebra:

• Basic properties and operations with matrices

• Special kinds and forms of matrices

• Determinants, adjoints, and inverses of matrices

• Quadratic forms, principal minors, and definiteness of matrices
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What is a matrix?

A matrix, A, of dimension k × n is just a rectangular array of numbers with k rows and n columns

A =


a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
· · · · · · · · · · · · · · · · · ·
ai1 ai2 · · · aij · · · ain
· · · · · · · · · · · · · · · · · ·
ak1 ak2 · · · akj · · · akn



The number in row i and column j is the (i , j)th entry, written aij
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Some basic properties of matrices

• Two matrices, A and B, have the same “size” if they have the same dimensions, k × n

• Two matrices, A and B, are equal if they are same-sized and each corresponding element is equal

• If the sizes are right, two matrices can be added, subtracted, multiplied, and divided

• Interchanging the rows and columns of a k × n matrix, A, yields a n × k matrix, AT (or A′),
called the “transpose” of A

A =

(
a b c
d e f

)
⇒ A′ =

 a d
b e
c f


• A k × 1 matrix is a “column vector”. A 1× n matrix is a “row vector”

A =

 a
b
c

 ⇒ A′ =
(

a b c
)
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Maxtrix transposition exercises

Exercise:

(1) Create a 3× 3 matrix, W , using real numbers

(2) Create a different 3× 3 matrix, Z , using real numbers

(3) Create a 2× 3 matrix, V , using real numbers

(4) Find the transpose of W

(5) Find the transpose of Z

(6) Find the transpose of V
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A bit more on vectors

Vectors can be thought of as points in n-space. They can also be thought of as “displacements”—that
is, they have magnitude and direction (often written with commas instead of spaces between elements)

• In R2, a vector (x , y) is an ordered “pair” where x and y are real numbers

→ The displacement (3, 2) means move 3 units right (along the x-axis) and 2 units up (along
the y -axis) relative to the current location

• In R3, a vector (x , y , z) is an ordered “triple” where x and y and z are real numbers

→ The displacement (1,−4, 1) means move 1 unit right (along the x-axis), 4 units down
(along the y -axis), and 1 unit forward (along the z axis) relative to the current location

• More generally, in Rn, a vector (x1, ..., xn) is a “tuple” (a finite sequence) of real numbers

• The tail of the arrow is not specified by the vector, and can be anywhere in Euclidean space

• The natural initial location is the origin, 0
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Adding matrices

Two matrices, A and B, can be added only if they have the same size

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33


⇒ A+ B =

 a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33


But if we have

C =

(
c11 c12 c13
c21 c22 c23

)
, D =

 d11 d12
d21 d22
d31 d32


... then C + D is not defined

Exercise:

(1) Is C + D ′ defined? If so, what is it? What about C ′ + D? And C ′ + D ′?
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Subtracting matrices

Two matrices, A and B, can be subtracted only if they have the same size

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33


⇒ A− B =

 a11 − b11 a12 − b12 a13 − b13
a21 − b21 a22 − b22 a23 − b23
a31 − b31 a32 − b32 a33 − b33


But if we have

C =

(
c11 c12 c13
c21 c22 c23

)
, D =

 d11 d12
d21 d22
d31 d32


... then C − D is not defined

Exercise:

(1) Is C − D ′ defined? If so, what is it? What about C ′ − D? And C ′ − D ′?
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More exercises adding and substracting matrices

Consider your matrices, W , Z , and V

Exercise:

(1) Are W + Z , W ′ + Z , W + Z ′, or W ′ + Z ′ defined? If so, what are they?

(2) What about W + V , W ′ + V , W + V ′, or W ′ + V ′?

(3) Are W − Z , W ′ − Z , W − Z ′, or W ′ − Z ′ defined? If so, what are they?

(4) What about W − V , W ′ − V , W − V ′, or W ′ − V ′?
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Scalar multiplication of matrices

Matrices can be multiplied by ordinary numbers, called “scalars”. The product of a
scalar r and a matrix A is rA

rA = r

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 ra11 ra12 ra13
ra21 ra22 ra23
ra31 ra32 ra33
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Multiplying matrices

Two matrices, A and B, can be multiplied iff the number of columns of A = the number of rows of B

A =
(

a11 a12 a13
)
, B =

 b11
b21
b31

 ⇒ AB = a11b11 + a12b21 + a13b31

In general, if A and B are matrices than can be multiplied, then the (i , j)th entry of the (dot) product,
AB, is the product of the ith row of A and the jth row of B:

∑3
h=1 aihbhj a b

c d
e f

(
A B
C D

)
=

 aA+ bC aB + bD
cA+ dC cB + dD
eA+ fC eB + fD


But note this is not defined (

A B
C D

) a b
c d
e f
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Matrix multiplication exercises

Consider your matrices, W , Z , and V

Exercise:

(1) Is WZ defined? If so, what is it? What about ZW ? And W ′Z? And W ′Z ′?

(2) Is WV defined? If so, what is it? What about W ′V ? And WV ′? And W ′V ′?

(3) Is VV ′ defined? If so, what is it? What about V ′V ? And WVV ′? And WV ′V ?
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A bit more on multiplying matrices

• If A is k ×m and B is m × n, then the product AB will be k × n, inheriting the
number of rows from A and the number of columns from B

• The “identity” matrix is n × n with aii = 1 for all i and aij = 0 for all i ̸= j

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1


• I has several useful properties:

(1) For any m × n matrix A, AI = A

(2) For any n × l matrix B, IB = B

(3) II = I
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Useful laws of matrix algebra

Let A, B, and C be k × n matrices, with k > 1, n > 1. Let a and b be k × 1 vectors,
and c be a n × 1 vector

• (A+ B) + C = A+ (B+ C)

• (AB)C = A(BC)

• (A+ B)C = AC+ BC

• (AB)′ = B′A′

• (a′Bc)′ = c′B′a

• a′b = b′a

• In general, AB ̸= BA
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More matrix exercises

We’ve just seen several useful laws of matrix algebra:

Exercise:

(1) Find the dimensionality of each LHS and RHS of these laws given the defined
matrices

(2) For each law, come up with a concrete example (with k > 2 and n > 1)

(3) Use some of these results to show that a′Bc = (a′Bc)′. Explain why this is true,
and come up with an example to demonstrate it
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Special kinds of matrices

Here are several important classes of k × n matrices

• Square matrix: k = n ⇒ A square matrix is a n × n matrix. Also identified as a matrix “in Mn”

→ If a matrix X is m × n, m ̸= n, then X is not square. But X′X is square

• Diagonal matrix: A n × n matrix for which and aij = 0 for i ̸= j

• Upper-triangular matrix: A matrix, A, whose elements aij = 0 if i > j

• Lower-triangular matrix: A matrix, A, whose elements aij = 0 if i < j

• Symmetric matrix: A matrix, A, such that A′ = A ⇐⇒ aij = aji for all i , j . Necessarily n × n

• Idempotent matrix: A n × n matrix A for which AA = A (e.g. A = I)

• Permutation matrix: n × n and only 0s and 1s, with exactly one 1 in each row and column

• Nonsingular matrix: A n × n matrix A whose rank is n: rank(A) = n

→ rank(A) = the number of linearly independent columns (or rows) of A
→ iff Ax = b has a unique solution x for every RHS b

Exercise: Come up with an example of each of these special types of matrices where k > 1 and n > 2
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Reduced row echelon form

• A k × n matrix A is in “row echelon form” if each row has more leading zeros than the row
preceding it

• The first nonzero entry in each row of a k × n matrix A is called a “pivot”

• A row echelon k × n matrix A in which each pivot is a 1 and in which each column containing a
pivot contains no other non-zero entries is in “reduced row echelon form” (rref)

Exercise:

(1) Write a non-zero 2× 2 matrix that is not in row echelon form

(2) Write a non-zero 2× 2 matrix that is in row echelon form

(3) What are the pivots of your matrix from (2)?

(4) Write a 2× 2 matrix in reduced row echelon form (rref)

(5) Write a 3× 3 matrix in rref that is not the identity matrix and which has at least two pivots
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Augmented matrices

Let A be a k × n matrix and B be a k ×m matrix (same number of rows)

• Then we can “augment” A with B by writing a11 ... a1n b11 ... b1m
... ... ... ... ... ...
ak1 ... akn bk1 ... bkm


which we denote [A|B] and call an “augmented matrix”

→ Do not think of this as conditionality (or ”A given B”)
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Augmented matrices and elementary row operations

Suppose we have a system of 2 equations with 2 unknowns:

3x + y = 1

x − y = 2

We can solve this simple system using e.g. elimination to find (x∗, y∗) = (0.75,−1.25)

We can also put it in matrix form, Ax = b, and solve for x by augmenting A with b and using
“elementary row operations” on the result to reduce the A part to reduced row echelon form

Exercise:

(1) Use elimination to show that (x∗, y∗) = (0.75,−1.25)

(2) Write down A, x, and b, then write out the system in matrix form using these matrices

(3) Write the augmented matrix of this system, [A|b]
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Performing elementary row operations on an augmented matrix

“Elementary row operations” involve one or more iterations of one or more of the following operations:

(1) Interchange two rows of a matrix

(2) Change a row by adding it to a multiple of another row

(3) Multiply each element in a row by the same nonzero number

To solve a system of equations, we perform elementary row operations on each row in the augmented
matrix until the A component is in reduced row echelon form

→ Do this iteratively to ensure you don’t make a mistake

→ The right-most column in the final augmented matrix will be the solution, x∗

Exercise:

(1) Perform elementary row operations on [A|b] from the previous exercise to solve for x

(2) Multiply Ax∗. What is the result?

(3) Check if your matrix W (from earlier) is nonsingular. If not, change it so it is. Now augment this
nonsingular matrix W with I, then reduce the W component to rref
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Determinants of matrices

The “determinant” of a matrix A, written as det(A) or |A|, is defined inductively

Definitions of the determinant for 1× 1 and 2× 2 matrices:

• For a 1× 1 matrix, the scalar a, the inverse 1/a exists iff a ̸= 0

· det(a) = a

• For a 2× 2 matrix, A =

(
a b
c d

)
, A is nonsingular iff ad − bc ̸= 0

· det(A) =

(
a11 a12
a21 a22

)
= a11a22 − a12a21

= a11 det(a22)− a12 det(a21)

→ The first term on the RHS is a11 times the determinant of the submatrix obtained by
deleting row 1 and column 1 from A

→ The second term on the RHS is a12 times the determinant of the submatrix obtained by
deleting row 1 and column 2 from A

→ The terms alternate in sign: the first receives a positive, the second a negative
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Determinants of matrices (general)

Let A be a n × n matrix with n > 1. Let Aij be the (n − 1)× (n − 1) submatrix obtained by deleting
row i and column j from A. Then

• The scalar Mij ≡ det(Aij) is called the (i , j)th “minor” of A

• The scalar Cij≡ (−1)i+jMij is called the (i , j)th “cofactor” of A

→ Mij = Cij is signed positive if (i + j) is even, and Mij = −Cij is negative if (i + j) is odd

Then the determinant of an n × n matrix A is

det(A) = a11C11 + a12C12 + ...+ a1nC1n

= a11M11 − a12M12 + ...+ (−1)n+1a1nM1n

Exercise:

(1) Write down a 3× 3 nonsingular matrix. Call it C

(2) Find a matrix D = aIC , where a = 3 is a scalar and I is the 3× 3 identity matrix

(3) Use the method above to find the determinant of D
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The determinants you’ll need to know from a practical point of view

Let a ̸= 0 be a scalar, and let A =

(
a b
c d

)
and B =

 a b c
d e f
g h i

 be nonsingular matrices

• |a| = a

• |A| = ad − bc

• |B| = aei + bfg + cdh − ceg − afh − bdi
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Adjoint of a matrix

Let A be a n × n matrix. Let Aij be the (n − 1)× (n − 1) submatrix obtained by deleting row i and
column j from A. We already saw:

• The scalar Mij ≡ det(Aij) is called the (i , j)th “minor” of A

• The scalar Cij≡ (−1)i+jMij is called the (i , j)th “cofactor” of A

Beyond helping us find determinants, this is useful because

• The “cofactor matrix” of a matrix A is the matrix of the cofactors of A

• The “adjoint” of a matrix, A, denoted adj(A), is the transpose of the cofactor matrix of A

→ Also called the “adjugate” of A

Exercise: Let A =

(
a b
c d

)
and B =

 a b c
d e f
g h i

 be nonsingular matrices

(1) Find adj(A)

(2) Find adj(B)
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Invertible matrices

• Let A be a matrix in Mn. The matrix B in Mn is an “inverse” for A if AB = BA = I

→ A matrix A in Mn can have at most one inverse

• If a matrix A in Mn, then we denote its unique inverse as A−1

→ If A is a 1× 1 matrix, A−1 = 1
A , so multiplying by A−1 is the analogue of dividing by A

• A matrix A in Mn is “invertible” iff it is nonsingular

• If a matrix A in Mn is “invertible”, then it is nonsingular and the unique solution to the system
of linear equations Ax = b is x = A−1b

→ Exercise: Prove this given what we’ve learned

• An n × n matrix A is nonsingular (thus invertible) iff |A| ̸= 0

→ Then A−1 =
1

|A| × adj(A)

• You can also find A−1 by creating the augmented matrix [A|I ], then using elementary row
operations to turn it into [I |A−1]

if we have a system of linear equations, Ax = b
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Useful rules with invertible, square matrices

Let A and B be invertible, square matrices. Then:

(1) (A−1)−1 = A

(2) (A′)−1 = (A−1)′

(3) AB is invertible, and (AB)−1 = B−1A−1

Exercise: For each of these rules, come up with a concrete example when n > 1
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Lab exercises 1

Exercise: Suppose you have 4 matrices:

W =

(
2 3
9 7

)
, X =

 6 0 2
3 4 1
3 7 7

, Z =

 6 2 4
3 4 1
3 1 2

, and V =

 2 1
2 3
3 1


(1) Find W−1 if it exists

(2) Find X−1 if it exists

(3) Find Z−1 if it exists

(4) Find V−1 if it exists

(5) Find (VV′)−1 if it exists

(6) Find (V′V)−1 if it exists
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Lab exercise 2

Suppose you have the system of linear equations we looked at earlier:

3x + y = 1

x − y = 2

We said this can be put in matrix form, Ax = b, and since A−1 exists we can solve for
x = A−1b

Exercise:

(1) Show that A−1 exists

(2) Prove that the existence of A−1 means that the unique solution to Ax = b is
x = A−1b. Show each step

(3) Find A−1

(4) Solve for x = A−1b
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Lab exercise 3

Exercise: Let A =

(
a b
c d

)
and X =


2 0 1
0 2 1
1 0 1
1 1 1


(1) Find A−1 using the method A−1 =

1

|A|
× adj(A)

(2) Find A−1 by creating the augmentented matrix [A|I], then use elementary row
operations to reduce the A component to rref. What is the resulting I portion?

(3) Find A−1A

(4) Is X invertible? How do you know? What about XX′? What about X′X?

(5) Find (X′X)−1 Why is it necessary that X′X be nonsingular for this?

(6) Find (X′X)−1X′X.Showyourwork
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Quadratic forms

We are often interested in “quadratic forms”. A quadratic form on Rk is a real-valued
function of the form

Q(x1, ..., xk) =
k∑

i ,j=1

aijxixj

For example, the quadratic form in R2 is Q(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2

A quadratic form can also be represented in matrix form given x′ = [x1 . . . xn] and
some n × n matrix A such that Q(x1, ..., xk) =

∑
i≤j aijxixj = x′Ax

There are many matrices that would do this. The ideal one is symmetric, with the
coefficients aij for i ̸= j equally apportioned (halved) between the associated
non-diagonal elements of the matrix

Math Camp for Economists: Matrix Analysis Justin C. Wiltshire, University of Victoria



The general quadratic form

The “general quadratic form” on Rn, Q(x1, ..., xn) =
∑

i≤j aijxixj , can be written as

Q(x) =
(
x1 x2 ... xn

)


a11
1
2a12 . . . 1

2a1n
1
2a12 a22 . . . 1

2a2n
...

...
. . .

...
1
2a1n

1
2a2n . . . ann




x1
x2
...
xn



= x′Ax

where A is a unique symmetric matrix that defines this quadratic form
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Principal minors of a matrix

Let A be a n × n matrix, with k ≤ n

• A k × k submatrix of A, formed by deleting n − k columns, say c1, c2, ..., cn−k , and the same
n − k rows, r1, r2, ..., rn−k from A, is called a “kth-order principal submatrix” of A

• The determinant of a k × k principal submatrix is called a “kth-order principal minor” of A

• The kth order principal submatrix of A formed by deleting the last n − k columns and rows from
A is called a “kth-order leading principal submatrix” of A

• The determinant of the kth-order leading principal submatrix of A is called the “kth order
leading principal minor” (LPM) of A
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Example: Principal minors of a matrix

Example: For a general 3× 3 matrix A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


• There is one third-order principal minor: |A|
• There are three second-order principal minors:

(1)

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ formed by deleting column 3 and row 3 from A

(2)

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ formed by deleting column 2 and row 2 from A

(3)

∣∣∣∣ a22 a23
a31 a33

∣∣∣∣ formed by deleting column 1 and row 1 from A

• There are three first-order principal minors:

(1) |a11|, formed by deleting the last 2 rows and columns

(2) |a22|, formed by deleting the first and third rows and columns

(3) |a33|, formed by deleting the first 2 rows and columns

Exercise: Find all the leading principal minors of A as functions of the elements of A
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Definiteness of symmetric matrices

We often care about the values taken by x′Ax when A is a n × n symmetric matrix and x ̸= 0

Let A be a n × n symmetric matrix. Then:

(1) A is “positive definite” if x′Ax > 0 for all x ̸= 0 ∈ Rn

→ iff all its n LPMs are strictly positive

(2) A is “positive semidefinite” if x′Ax ≥ 0 for all x ̸= 0 ∈ Rn

→ iff all its principal minors are non-negative

(3) A is “indefinite” if x′Ax > 0 for some x ∈ Rn, and < 0 for some other x ∈ Rn

(4) A is “negative semidefinite” if x′Ax ≤ 0 for all x ̸= 0 ∈ Rn

→ iff every principal minor of odd order is ≤ 0 and every principal minor of even order is ≥ 0
→ Alternatively, iff all principal minors of −A are non-negative

(5) A is “negative definite” if x′Ax < 0 for all x ̸= 0 ∈ Rn

→ iff all its n LPMs alternate in sign as follows: |A1| < 0, |A2| > 0, |A3| < 0, etc.
→ Alternatively, iff all n LPMs of −A are strictly positive
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Exercise: Definiteness of symmetric matrices

Exercise: Let A =

 1 0 −1
0 1 0

−1 0 1


(1) What are the principal minors of A?

(2) What is x′Ax for a general x =

 x1
x2
x3

?

(3) What is the definiteness of A?
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