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OLS with Matrices

In this lesson:

• We assume you have already fully grasped the earlier reviews of univariate OLS, matrix algebra,
and optimization

• To review OLS in matrix form, we also need to review a bit of matrix calculus

• We’ll then review multivariate OLS using matrix algebra
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Brief review of matrix calculus

Suppose we have a function y = T (x) where y is a m× 1 vector, x is a n× 1 vector. Denote the m× n
matrix of first derivatives as

∂y

∂x
=


∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym
∂xn
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∂y
∂x if y = Ax

Let y = Ax, where y is a m× 1 vector, x is a n× 1 vector, and A is a m× n matrix that is independent

of x. Then
∂y

∂x
= A

How do we know?

• We know the ith element of y is
∑n

j=1 aijxj

• Then it follows that
∂yi
∂xj

= aij for all i , j , which is the (i , j)th element of A

• Thus
∂y

∂x
= A

Exercise:

(1) Create a 3× 3 matrix, A, with at least two non-zero elements in each row and some elements > 1

(2) Use A and the column vector x = [x1 x2 x3]
′ to find y = Ax

(3) Differentiate yi wrt xj for each i , j = 1, 2, 3 to populate the (i , j)th element of a new 3× 3
matrix, B. How does B relate to A?
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∂b
∂x and ∂b

∂y if b = y′Ax

Let y be a m× 1 vector, x be a n× 1 vector, and A be a m× n matrix that is independent of x and y.

Define b = y′Ax is a scalar (how can you know?). Then
∂b

∂x
= y′A and

∂b

∂y
= x′A′

How do we know?

• Define w′ = y′A ⇒ b = w′x

• Then it follows that
b

∂x
= w′ = y′A

• Since b is a scalar, we can write b = y′Ax = x′A′y = b′

• Then
∂b

∂y
=

∂b′

∂y
= x′A′
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∂b
∂x if b = x′Ax

Let x be a n× 1 vector, and A be a n× n matrix that is independent of x. Define b = x′Ax is a scalar.

Then
∂b

∂x
= x′(A+ A′) or

∂b

∂x
= (A+ A′)x. Pick the one that satisfies the needed dimensions, as b is

a scalar

How do we know?

• We know that by definition b =
n∑

j=1

n∑
i=1

aijxixj

• Differentiate b wrt the kth element of x:
∂b

∂xk
=

n∑
j=1

akjxj +
n∑

i=1

aikxi for all k

• Then
∂b

∂x
= x′A+ x′A′ = x′(A+ A′)

(
or

∂b

∂x
= (A+ A′)x

)
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Exercise with ∂b
∂x if b = x′Ax

Exercise: Let A =

(
1 2
1 1

)
(1) Find b = x′Ax

(2) Differentiate b wrt xk , k = 1, 2 to populate the (1, k)th element of a 1×2 vector c

(3) Find A+ A′

(4) Noting b = b′, find the 1× 2 vector d = ∂b
∂x

(5) How does c relate to d?
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∂b
∂x if b = x′Ax and A is symmetric

Let x be a n× 1 vector, and A be a n× n symmetric matrix that is independent of x. Define b = x′Ax

is a scalar. Then
∂b

∂x
= 2x′A (alternatively,

∂b

∂x
= 2Ax)

How do we know? It follows directly from the more general previous result because for a symmetric
matrix A we have A′ = A ⇒ (A+ A′) = (A+ A) = 2A
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∂A−1

∂c
if A is a nonsingular matrix with elements functions of a scalar parameter c

Let A be a m ×m nonsingular matrix whose elements are functions of a scalar parameter c. Then

∂A

∂c
=


∂a11
∂c

. . . ∂a1m
∂c

...
. . .

...
∂am1
∂c

. . . ∂amm
∂c


and

∂A−1

∂c
= −A−1 ∂A

∂c
A−1

How do we know?

• We know that by definition A−1A = I

• Then
∂(A−1A)

∂c
= A−1 ∂A

∂c
+

∂A−1

∂c
A = 0

• Rearranging and recalling A−1A = I yields
∂A−1

∂c
= −A−1 ∂A

∂c
A−1
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Exercise with
∂A−1

∂c
if A is a nonsingular matrix with elements functions of a scalar parameter c

Exercise: Let A =

(
c 2c
2c 2c

)
(1) Differentiate A wrt c

(2) Find A−1

(3) Find A−1A

(4) Differentiate A−1 wrt c . Call this
∂A−1

∂c
= W

(5) Find −A−1∂A

∂c
A−1 = Z

(6) How does Z relate to W?
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OLS: the true model

Assume a specific reduced form model of the DGP for y holds in the population such
that for each individual i = 1, ..., n

yi = β0 + β1X1,i + β2X2,i + ...+ βk−1Xk−1,i + ϵi

• yi is i ’s observed value of the outcome y

• Xj ,i is i ’s observed value of variable Xj which is independent of Xm for all j ̸= m,
j ,m = 1, ..., k − 1

• ϵi is the error (or “disturbance”) for i

• βj , j = 0, ..., k − 1 are (unknown) population parameters
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The true model in matrix form

We can write this in matrix form as
y1
y2
...
yn

 =


1 X1,1 X2,1 . . . Xk−1,1

1 X1,2 X2,2 . . . Xk−1,2

...
...

...
. . .

...
1 X1,n X2,n . . . Xk−1,n




β0

β1

β2

...
βk−1

+


ϵ1
ϵ2
...
ϵn


or, more compactly, y = Xβ + ϵ with rows yi = x′iβ + ϵi , i = 1, ..., n

• This is linear in the parameters

• X is a n × k matrix of n observations of k − 1 (assumed) independent “regressor” variables
(left-augmented with a column of ones for the constant β0)

→ The independence assumption means X has full column rank
→ This will ensure that the inverse of X′X exists
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The sum of squared residuals given some estimator for β, β̂

Let β̂ be some estimator for β

• This implies the fitted values are ŷ = Xβ̂

• We denote the residuals (these are the prediction errors. You may prefer to denote them ϵ̂):

e = y − ŷ

= y − Xβ̂

• Then the sum of squared residuals (SSR) is

e′e = (y − Xβ̂)′(y − Xβ̂)

= y′y − y′Xβ̂ − β̂
′
X′y + β̂

′
X′Xβ̂

= y′y − 2β̂
′
X′y + β̂

′
X′Xβ̂

where this last equality arises because y′Xβ̂ = β̂
′
X′y

Exercise:

(1) Why is this last statement true? Recall our exercises with the laws of matrix algebra

(2) Show this using a 3× 1 vector y, a 3× 2 matrix X with full column rank, and a 2× 1 vector β̂
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Estimating β with OLS

We estimate β̂OLS by choosing β̂ to minimize e′e. That is:

β̂OLS = argmin
β̂

y′y − 2β̂
′
X′y + β̂

′
X′Xβ̂

Exercise: Use the matrix differentiation we just reviewed

(1) What are the FOCs for this minimization problem? Ensure the matrix exists as you’ve written it

(2) Assuming X has full column rank, solve for β̂OLS

(3) What is the necessary SOC for β̂OLS to be the global minimizer of e′e?

(4) Let y =


2
3
1
2

 and X =


1 1 2
1 2 1
1 1 1
1 1 1


a) How many (assumed) independent variables are there? How many parameters to estimate?
b) Is X′X invertible? How do you know?
c) Find β̂OLS

d) Does β̂OLS minimize e′e? How do you know?
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Properties of β̂OLS

We just found that the FOCs were

∂e′e

∂β̂
= −2X′y + 2X′Xβ̂

= 0

⇒ X′Xβ̂ = X′y

By the definition of the residuals, we have y = Xβ̂ + e. Plug this into the equality above:

X′Xβ̂ = X′(Xβ̂ + e)

= X′Xβ̂ + X′e

⇒ X′e = 0

That is, X is “orthogonal” to e. This result can also be written as
∑n

i=1 xj,iei = 0 for all
j = 0, ..., k − 1 and says the sample covariance of each of the k − 1 regressors with the residuals is zero

→ Recall that x0 is a vector of ones which cannot vary with e
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Important properties of the OLS estimators given X′e = 0

Provided we include a constant in the model, we learn several important properties about the OLS
estimators from X′e = 0

• The observed values of X are uncorrelated with the residuals

• The residuals always sum to zero:
∑n

i=1 ei = 0

• The mean of the residuals is zero: e = 1
n

∑n
i=1 ei = 0

• The regression hyperplane passes through the means of the observed values. That is, (x̄ , ȳ) is
always on the OLS regression line: ȳ = xβ̂

• The predicted values ŷ are uncorrelated with the residuals

→ Given ŷ = Xβ̂ we have ŷ′e = (Xβ̂)′e = β̂
′
X′e = β̂

′
0 = 0

• ŷ = y

Note that these properties hold by construction and involve the residuals. They say nothing about the
unobserved errors, ϵ
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Exercises with the residuals

Exercise: Using y, X, and your β̂OLS from the previous exercise

(1) Find e

(2) Find the sum of the residuals,
∑n

i=1 ei

(3) Find the mean of the residuals, e = 1
n

∑n
i=1 ei

(4) Find X′e

(5) Find ŷ′e
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Gauss-Markov Theorem

Can we say anything yet about whether β̂OLS is a “good” estimator for β? No! Again, we need some
assumptions on the true population model. Actually, we already put some on it, but we need more!

Under a set of assumptions/conditions on the true population model, no other linear and unbiased
estimator will have a smaller sampling variance than the OLS estimator (β̂OLS)

• This is the Gauss-Markov theorem

• Obviously (pretty much a restatement of the definition), it suggests that β̂OLS is linear, unbiased
(for β), and has the smallest sampling variance of this class of estimators

• You’ll recall this being boiled down to “OLS is BLUE (Best Linear Unbiased Estimator)”

→ “Best” means it has the smallest sampling variance among this class of estimators
→ “Linear” means it is linear in the parameters

→ “Unbiased” means (narrowing what we said earlier) that Bias(β̂OLS ,β) = E
[
β̂OLS

]
−β = 0
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Gauss-Markov assumptions

Several assumptions about the true population model are needed for OLS to be BLUE:

(1) y = Xβ + ϵ

→ There’s a linear relationship between X and y (already assumed)

(2) X is a n × k matrix with full column rank: rank(X) = k (already assumed)

→ No perfect multicollinearity

(3) Zero conditional mean of the errors (Note: E [ϵ] = 0 is trivial with a constant term included in y)

E [ϵ|X] = E

 ϵ1|X
...

ϵn|X

 =

 E [ϵ1]
...

E [ϵn]

 =

 0
...
0

 = 0

→ X tells us nothing about the expected value of the errors
⇒ E [y] = Xβ
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Gauss-Markov assumptions cont’d.

(4) The errors are homoskedastic and uncorrelated

E [ϵϵ′|X] = E


ϵ1|X
.
.
.

ϵn|X

 [
ϵ1|X . . . ϵn|X

]

= E


ϵ21|X . . . ϵ1ϵn|X
.
.
.

. . .
.
.
.

ϵnϵ1|X . . . ϵ2n|X



=


E [ϵ21|X] . . . E [ϵ1ϵn ]|X

.

.

.
. . .

.

.

.

E [ϵnϵ1|X] . . . E [ϵ2n ]|X



=


σ2 0 . . . 0

0 σ2 . . . 0

.

.

.

.

.

.
. . .

.

.

.

0 0 . . . σ2

 = σ
2


1 0 . . . 0
0 1 . . . 0

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 1

 = σ
2I

⇒ Ω = σ
2I
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Implications of the Gauss-Markov assumptions

Given these assumptions, and given that β̂OLS = (X′X)−1X′y, and y = Xβ + ϵ together yield

β̂OLS = (X′X)−1X′(Xβ + ϵ) = β + (X′X)−1X
′
ϵ

→ Note: Let B = A− (X′X)−1X′. Then for

(1) β̂OLS is unbiased for β:

E [β̂OLS |X] = E [β|X] + E [(X′X)−1X
′
ϵ|X]

= β + (X′X)−1X
′
E [ϵ|X]

= β + (X′X)−1X
′
0

= β
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Implications of the Gauss-Markov assumptions cont’d.

(2) Var(β̂OLS |X) = σ2(X′X)−1:

Var(β̂OLS |X) = E [(β̂OLS − E [β̂OLS ])(β̂OLS − E [β̂OLS ])
′|X]

= E [(X′X)−1X
′
ϵϵ′X(X′X)−1|X]

= (X′X)−1X
′
E [ϵϵ′|X]X(X′X)−1

= (X′X)−1X
′
(σ2I )X(X′X)−1

= σ2(X′X)−1X
′
X(X′X)−1

= σ2(X′X)−1
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Implications of the Gauss-Markov assumptions cont’d.

(3) β̂OLS has the smallest sampling variance among all linear unbiased estimators. That is, for any
k × 1 vector c ̸= 0, we have Var(c′β̂OLS) ≤ Var(c′β̃)

• Note that all linear estimators take the form β̃ = Ay
• Define B = A− (X′X)−1X′ such that

β̃ = Ay = [(X′X)−1X′ + B]y

= [(X′X)−1X′ + B](Xβ + ϵ)

= β + BXβ + [(X′X)−1X′ + B]ϵ

Thus
E [Ay|X] = β + BXβ

As we are considering only unbiased linear estimators, we must choose A such that BX = 0
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Implications of the Gauss-Markov assumptions cont’d

Then
Var(β̃|X) = E [(β̃ − E [β̃])(β̃ − E [β̃])′|X]

= E [[(X′X)−1X′ + B]ϵϵ′[B′ + X(X′X)−1]|X]

= [(X′X)−1X+ B]′E [ϵϵ′|X][B′ + X(X′X)−1]

= σ2[(X′X)−1 + BB′]

= Var(β̂OLS) + σ2BB′

Thus for any k × 1 vector c ̸= 0

Var(c′β̃) = Var(c′β̂OLS) + σ2c′BB′c = Var(c′β̂OLS) + σ2(B′c)′Bc ≥ Var(c′β̂OLS)

Thus under the Gauss-Markov assumptions β̂OLS is the best linear unbiased estimator
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