allsynth: Synthetic Control Bias-Correction Utilities for Stata

Justin C. Wiltshire

University of California, Davis

April 24, 2022

Prepared for 2021 Stata Conference

I introduce a new community-contributed stata package: allsynth

allsynth is built on the synth package and adds functionality

In this presentation:

- Review of synthetic control methodology, including proposed bias-correction for inexact matching (Abadie and L'hour, 2020)
- Describe the functionality added by the allsynth package (with examples!):
 - Synthetic control bias-correction for inexact matching on predictor values
 - Calculation of RMPSE-ranked p-values from in-space treatment permutations
 - Expanded graphing functionality
 - ullet Diagnostics for whether $\hat{f W}$ -weighting matrix is likely unique
- Examples rely on synth_smoking data from synth package (Abadie et al., 2010)

Synthetic control literature

Canonical:

• Abadie & Gardeazabal, 2003; Abadie et al., 2010, 2015

Many treated units:

Cavallo et al., 2013; Dube & Zipperer, 2015; Acemoglu et al., 2016; Abadie & L'Hour, 2020; Abadie, 2021; Ben-Michael et al., 2021b; Wiltshire, 2021a

Inference:

Abadie et al., 2010, 2015; Doudchenko & Imbens, 2016; Hahn & Shi, 2017;
 Ferman & Pinto, 2017; Firpo & Possebom, 2018; Chernozhukov et al., 2019

Bias-correction for inexact matching on predictor values:

Abadie & L'Hour, 2020; Abadie, 2021; Ben-Michael et al., 2021a; Wiltshire, 2021a

Abadie (2021) provides an excellent, current review

Potential outcomes framework

For any unit j at time t:

- Let $Y_{i,t}^I$ be the potential outcome under Intervention/treatment
- Let $Y_{j,t}^N$ be the potential outcome under Non-intervention/non-treatment
- The observed outcome is: $Y_{j,t} = Y_{j,t}^N + \tau_{j,t}D_{j,t}$
 - ightarrow $D_{j,t}$ is a dummy indicating if j is treated at t
- Define the treatment effect in $\{j,t\}$ as: $\tau_{j,t}=Y_{j,t}^I-Y_{j,t}^N$
- Let a single unit, j = 1, become treated at $T_0 + 1$
- ullet We want to estimate path of treatment effects: $(au_{_{1}, au_{_{0}+1}},..., au_{_{1}, au})$
- ullet We can never observe both $Y_{1,t}^I$ and $Y_{1,t}^N$
- For $t > T_0$, $Y_{1,t} = Y_{1,t}^I$ is observable so we only need to estimate $Y_{1,t}^N$

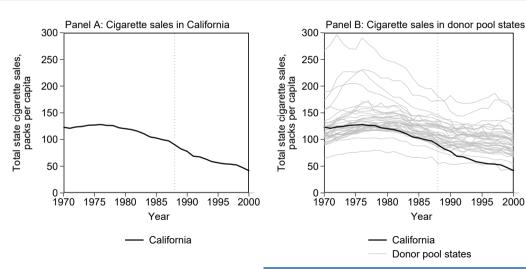
Synthetic control estimator with a single treated unit

Suppose we have data on J units over T periods

- j = 1 is a treated unit. j = 2, ..., J + 1 are untreated "donor pool" units
- T_0 pre-treatment periods, $T T_0 > 0$ treated periods
- We specify r covariates plus M linear combinations of $Y_{j,t}$ (for $t \leq T_0$) $\rightarrow r + M = K$ total predictor variables
- \mathbf{X}_1 is a $K \times 1$ vector of predictors of $Y_{1,t}$ in treated unit j=1
- X_0 is a $K \times J$ matrix of predictors of $Y_{j,t}$ in donor pool units j > 1

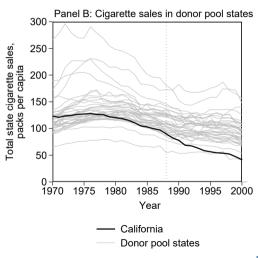
Synthetic control estimator with a single treated unit

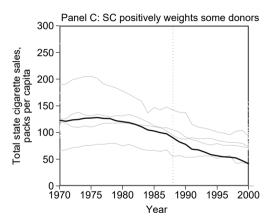
Synthetic control estimator identifies a weighted average of donor pool units:


$$\hat{Y}_{1,t}^{N} = \sum_{j=2}^{J+1} \hat{w}_j Y_{j,t} \ \forall \ t$$

- ightarrow Once we have $\hat{Y}^N_{1,t}$, we can calculate: $\hat{ au}_{j,t} = Y_{j,t} \hat{Y}^N_{j,t}$
- $\mathbf{V} = (v_1, ..., v_K)$ is a matrix of weights on the predictor variables
- $W(V) = (w_2(V), \dots, w_{J+1}(V))'$ is a vector of weights on donor pool units j > 1
- Classic synthetic control selects $\hat{\mathbf{V}}$ and $\hat{\mathbf{W}} = \mathbf{W}(\hat{\mathbf{V}})$ to minimize:

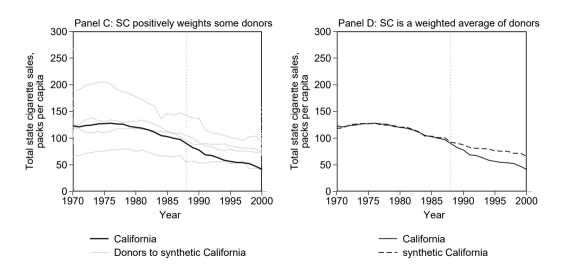
$$\left(\sum_{k=1}^{K} \hat{v}_k (X_{k,1} - w_2 X_{k,2} - \dots - w_{J+1} X_{k,J+1})^2\right)^{1/2}$$

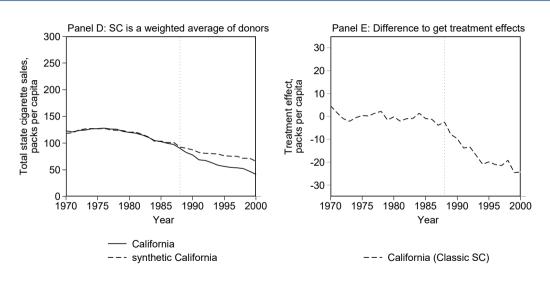

s.t.
$$\sum_{i=2}^{J+1} w_i = 1, \ w_i \ge 0 \ \forall \ j \in \{2, ..., J+1\}$$


Example: We observe cigarette sales in California and untreated states (donor pool). In 1989, California increased its cigarette excise tax

2000

Synthetic control weights predictor variables, then positively weights some untreated states to best match pre-treatment California on those predictors




California

Donors to synthetic California

The weighted average of those donors is the synthetic California

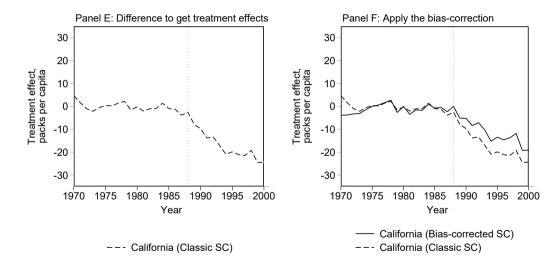
California minus synthetic California cig sales is estimated treatment effect

The allsynth package: adds functionality to the synth package

- Synthetic control bias-correction for inexact matching on predictor values between a treated unit and its synthetic control donors (OLS regression)
- Automated calculation of RMPSE p-values from in-space permutation tests
- Expanded graphing functionality
- ullet Uniqueness diagnostics (e.g. warns if the $\hat{f W}$ matrix is unlikely unique)

Note: In addition to directly utilizing the synth package, the code for allsynth draws appreciatively on Jens Hainmueller's code for synth and slightly on the code for synth_runner (Galiani and Quistorff, 2018).

Bias correction for inexact matching on predictor values


- Abadie and L'Hour (2020) (independently, Ben-Michael et al. (2021a)) propose bias correction analogous to Abadie and Imbens (2011) for matching estimators
 - \rightarrow Wrote package to implement this in R

Bias correction for inexact matching on predictors (single treated unit)

- First get \hat{w}_i from synthetic control estimation on uncorrected values
- Let $\mu_{0,t}(x) = E[Y|X=x, D=0]$, and let $\hat{\mu}_{0,t}(x)$ be an estimator of $\mu_{0,t}(x)$
- Estimate $\hat{\mu}_{0,t}(x)$ by regressing $Y_{j,t}$ for untreated j > 1, in each $t \leq T$, on the predictor values, \mathbf{X}_j , for untreated j > 1
- The bias in $\hat{\tau}_{1,t}$ from inexact matching is $\sum_{j=2}^{J+1} \hat{w}_j(\hat{\mu}_{0,t}(\mathbf{X}_1) \hat{\mu}_{0,t}(\mathbf{X}_j))$
- Then the bias-corrected treatment effect at time t is:

$$\begin{split} \tilde{\hat{\tau}}_{1,t} &= \hat{\tau}_{1,t} - bias_t \\ &= (Y_{1,t} - \sum_{j=2}^{J+1} \hat{w}_j Y_{j,t}) - \sum_{j=2}^{J+1} \hat{w}_j (\hat{\mu}_{0,t}(\mathbf{X}_1) - \hat{\mu}_{0,t}(\mathbf{X}_j)) \\ &= (Y_{1,t} - \hat{\mu}_{0,t}(\mathbf{X}_1)) - \sum_{j=2}^{J+1} \hat{w}_j (Y_{j,t} - \hat{\mu}_{0,t}(\mathbf{X}_j)) \end{split}$$

Applying bias-correction to the California cigarette sales $\hat{ au}_{1,t}$

allsynth can be used like synth but offers additional functionality

allsynth requires same specifications as synth. In addition, users may specify:

- bcorrect(string)
 - One of nosave, merge, or replace must be specified with bcorrect()
 - $\rightarrow \hat{\mu}_{0,t}(x)$ is estimated using OLS regression
 - \rightarrow Requires at least K + 2 donor pool units, K is # of predictors
 - figure may additionally be specified. e.g. bcorrect(replace figure)
- pvalues calculates RMPSE-ranked p-values from in-space placebo runs
 - If specified with bcorrect(), calculates classic and bias-corrected p-values
- placeboskeep saves the results of the placebo runs estimated for pvalues
 - May only be specified when both keep() and pvalues are also specified
- gapfigure(string)
 - One of classic, bcorrect, or placebos must be specified with gapfig()
 - At most two may be specified together
 - lineback may additionally be specified. e.g. gapfig(bcorrect lineback)
- ullet allsynth will always warn if the $\hat{f W}$ matrix unlikely unique

allsynth: Can be used like synth

Same primary specification as in the synth help file yields same results:

```
#delimit ;
  allsynth
    cigsale beer(1984(1)1988) lnincome retprice age15to24
    cigsale(1988) cigsale(1980) cigsale(1975),
    trunit(3) trperiod(1989)
#delimit cr
```

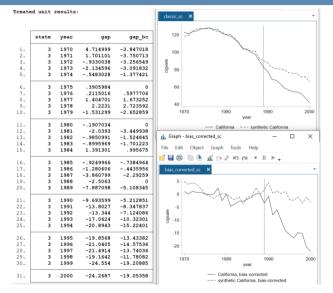
allsynth: Can be used like synth

Also lets you know that you haven't properly specified bias-correction:

Predictor Balance:

	Treated	Synthetic
beer (1984 (1) 1988)	24.28	23.22596
lnincome	10.03176	9.867266
retprice	66.63684	65.40743
age15to24	.1786624	.1825559
cigsale(1988)	90.1	92.6063
cigsale(1980)	120.2	120.3907
cigsale(1975)	127.1	126.7094

Plain vanilla -synth- estimates provided. No bias correction or p-value calculations specified or applied.

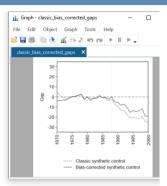

allsynth: Cautions the user if the $\hat{\mathbf{W}}$ matrix is unlikely unique

e.g. If we specify too few predictor variables, we get a warning message:

```
Add keep(smokingresults) replace figure bcorrect(replace figure):
#delimit ;
   allsynth
      cigsale beer(1984(1)1988) lnincome retprice age15to24
      cigsale(1988) cigsale(1980) cigsale(1975),
      trunit(3) trperiod(1989)
      keep(smokingresults) replace figure
      bcor(replace figure)
   #delimit cr
```

The bias-corrected outcome values are only useful to calculate the bias-corrected gaps!

allsynth: Can calculate, display, and save classic & bias-corrected "gaps"


allsynth: Can generate nice graphs of the classic and bias-corrected gaps

```
Also add gapfig(classic bcorrect lineback). Drop fig and bcor(figure):

#delimit;
allsynth
cigsale beer(1984(1)1988) lnincome retprice age15to24
cigsale(1988) cigsale(1980) cigsale(1975),
trunit(3) trperiod(1989)
keep(smokingresults) replace
bcorrect(replace) gapfig(classic bcorrect lineback)
#delimit cr
```

allsynth: Can generate nice graphs of the classic and bias-corrected gaps

state 3 3	year	gap	gap_bc
	1970		
3		4.714999	-3.847018
	1971	1.701101	-3.750713
3	1972	9330038	-3.256549
3	1973	-2.134596	-3.091832
3	1974	5483028	-1.377421
3	1975	.3905984	0
3	1976	.2115016	.5977706
3	1977	1.404701	1.673252
3	1978	2.2231	2.723592
3	1979	-1.531299	-2.652859
3	1980	1907034	0
3	1981	-2.0393	-3.449938
3	1982	9850991	-1.524845
3	1983	8995969	-1.701223
3	1984	1.391301	.995675
3	1985	9249966	7384964
3	1986	-1.280606	4435956
3	1987	-3.860799	-2.29259
3	1988	-2.5063	0
3	1989	-7.887098	-5.108345
3	1990	-9.693599	-5.212851
3	1991	-13.8027	-8.347837
3	1992	-13.344	-7.124086
3	1993	-17.0624	-10.32301
3	1994	-20.8943	-15.22401
3	1995	-19.8568	-13.43382
3	1996	-21.0405	-14.57536
3	1997	-21.4914	-13.74036
3	1998	-19.1642	-11.78082
3	1999	-24.554	-19.20885
3	2000	-24.2687	-19.05358
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 1975 3 1976 3 1977 3 1978 3 1980 3 1991 3 1982 3 1993 3 1994 3 1995 3 1993 3 1994 3 1995 3 1999 3 1999 3 1999 3 1999	3 1975 .3905984 3 1976 .2115016 3 1977 1.404701 3 1978 2.2231 3 1979 -1.531229 3 19801907034 3 1991 -2.0393 3 19929850991 3 19939850991 3 1993 -1.39301 3 19959849966 3 1996 -1.200606 3 1997 -3.860799 3 1998 -2.5063 3 1999 -7.887098 3 1999 -7.887098 3 1999 -1.3,344 3 1999 -1.3,4027 3 1999 -1.3,4027 3 1999 -1.3,4027 3 1999 -1.9,63589 3 1999 -1.3,4027 3 1999 -1.3,4027 3 1999 -1.3,4027 3 1999 -2.1,4014 3 1999 -21,4015 3 1999 -21,4514 3 1999 -24,554

allsynth: Can run placebo tests, calculate *p*-values, and graph permutation distributions

```
Instead add gapfig(bcorrect placebos lineback) pvalues placeboskeep:
#delimit ;
   allsynth
      cigsale beer(1984(1)1988) lnincome retprice age15to24
      cigsale(1988) cigsale(1980) cigsale(1975),
      trunit(3) trperiod(1989)
      bcor(replace figure) gapfig(bcorrect placebos lineback)
      pval plac keep(smokingresults) rep
#delimit cr
```

allsynth: Can run placebo tests, calculate *p*-values, and graph permutation distributions

Installing allsynth package for Stata: currently Version 0.0.7 BETA

In Stata, type:

```
net from https://justinwiltshire.com/s
net install allsynth, replace
help allsynth
```

There are nine examples in help file to teach the functionality of allsynth

Version 0.0.5 BETA contained a critical bug. Please update to the latest version

The allsynth package is a free contribution to the research community. Please cite it:

Wiltshire, Justin C. 2021b. allsynth: Synthetic Control Bias-correction Utilities for Stata. Working paper.

Email comments and questions: jcwiltshire@ucdavis.edu

References

Abadie, A and J L'Hour. 2020. A Penalized Synthetic Control Estimator for Disaggregated Data. Working paper.

Abadie, Alberto. 2021. Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects. *Journal of Economic Literature* 59(2): 391–425.

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association 105(490): 493–505.

------. 2015. Comparative Politics and the Synthetic Control Method. American Journal of Political Science 59(2): 495-510.

Abadie, Alberto and Javier Gardeazabal. 2003. The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review 93(1): 113–132.

Abadie, Alberto and Guido W Imbens. 2011. Bias-Corrected Matching Estimators for Average Treatment Effects. Journal of Business Economic Statistics 29(1): 1–11.

Ben-Michael, Eli, Avi Feller, and Jesse Rothstein. 2021. The Augmented Synthetic Control Method. NBER Working paper.

----. 2021. Synthetic Controls with Staggered Adoption. NBER Working paper.

Cavallo, Eduardo, Sebastian Galiani, Ilan Noy, and Juan Pantano. 2013. Catastrophic Natural Disasters and Economic Growth. Review of Economics and Statistics 95(5): 1549–1561.

Chernozhukov, Victor, Kaspar Wuthrich, and Yinchu Zhu. 2019. An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls. Working paper.

Doudchenko, Nikolay and Guido W Imbens. 2016. Balancing, Regression, Difference-in-Differences and Synthetic Control Methods: A Synthesis. NBER Working paper.

Dube, A and B Zipperer. 2015. Pooling Multiple Case Studies Using Synthetic Controls: An Application to Minimum Wage Policies. *IZA Discussion Papers* 8944.

Ferman, Bruno and Cristine Pinto. 2017. Placebo Tests for Synthetic Controls. Working paper.

Firpo, Sergio and Vitor Possebom. 2018. Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets. *Journal of Causal Inference* 6(2).

Galiani S, Quistorff B. 2017. The synth_runner Package: Utilities to Automate Synthetic Control Estimation Using Synth. The Stata Journal 17(4): 834-49.

Hahn, Jinyong and Ruoyao Shi. 2017. Synthetic Control and Inference. Econometrics 5(4): 52.

Wiltshire, Justin C. 2021a. Walmart Supercenters and Monopsony Power: How a Large, Low-Wage Employer Impacts Local Labor Markets. Working paper.